

rangements in the alignment of the diene and the dienophile,¹⁴ could be possible if the "electrophile" is of insufficient energy to react via a conjugate addition (one-bond) pathway. The latter process, while less entropically demanding, does, of course, require the sustenance of charged (or radical) intermediates.

While the reasoning advanced above must be regarded as conjectural, in practice *compound* **2** *does participate in Diels-Alder reactions with methyl vinyl ketone (13), methacrolein (14), and methyl acrylate (15).* In the case of the reaction of $2 + 13$, a 13% yield of Michael-type product 16 was obtained along with the cycloaddition compound, **17.** In the reactions of **14** and 15 no Michael products were detected, though the complexity of the reaction mixtures¹³ rules out a definite statement in this regard. The structures of compounds **16-199** are rigorously proven by their infrared, NMR, and mass spectra. Pertinent reaction conditions and yields, as well as diagnostically valuable NMR chemical shifts (as

of limited scope, diene **3** may be regarded as a synthetic equivalent of ${}^+C(O)CH_2C(O)C-H_2.15$ It will be noted that, in products **17,18,** and **19,** three carbonyl systems are produced in varying, but differentiated, states of exposure. While the synthetic value of such systems remains to be demonstrated,

we note already that compound **17** reacts with aqueous HCl in THF, to give the specifically monoprotected 1,3,5 triketone **20** in 87% yield.

Studies involving the utilization of such systems as well as the exploration of new highly functionalized dienes are in progress and will be described in due course.

Acknowledgments. This research was supported by PHS Grant CA-12107-12. NMR spectra were obtained on instrumentation supported by R.R.-00296-06. Mass spectral measurements were made by Mr. Glen Herman. An unrestricted Award from the CIBA-GEIGY Corporation is gratefully acknowledged.

Supplemental Material Available. Experimental procedures for these reactions (4 pages). Ordering information is given on any current masthead.

References and Notes

-
- (1) S. Danishefsky and T. Kitahara. *J.* Am. Chem. **SOC., 96, 7807 (1974). (2) S.** Danishefsky and T. Kitahara, *J.* Org. Chem., **40, 538 (1975).**
- **(3)** For the synthesis of vernolepin, largely based on this concept, see S. Danishefsky, T. Kitahara, P. F. Schuda, and S. J. Etheredge, *J.* Am. Chem. *SOC.,* **98, 3028 (1976).**
- (4) F. A. Carey and A. J. Court, *J. Org. Chem.,* **37,** 4474 (1972).
(5) D. J. Peterson, *J. Org. Chem.,* **33,** 780 (1968).
(6) G. A. Russell and M. Ballenegger, *Synthesis,* 104 (1973).
-
-
- **(7)** (a) F. A. Carey and A. S. Court, *J.* Org. Chem., **37, 1926 (1972);** (b) D. Seebach, 8. Th. Grobel, M. Braun, and K. H. Geiss, Angew. Chem., *lnt. Ed.* Engl., **11, 443 (1972);** (c) F. Jones and M. F. Lappert, *J.* Chem. **SOC.,** Chem. Commun., **526 (1972).**
- **(8)** The NMR spectrum indicates a few percent of impurity containing a trimethylsilyl group.
- **(9)** The structure of this compound is in accord with its infrared, NMR, and high resolution mass spectra.
- **(10)** D. Seebach, M. Kolb, and 6.-Th. Grobel, Angew. Chem., *lnt. Ed.* Engl., **12,**
- 69 (1973).
(11) (a) S. M. McElvain and E. L. Engelhardt, *J. Am. Chem. Soc.,* 66, 1077 (1944);
(b) S. M. McElvain, E. R. Degginger, and J. D. Behun, *ibid.,* 76, 5736 (1954); (c) J. Banville, J. L. Grandmaison, G. Long, and P. Brassard, Can. *J.* Chem., **52, 80 (1974).**
- **(12)** R. C. Cookson, **S.** S. **H.** Gilani and i. D. **R.** Stevens, TetrahedronLett., **615 (1962).**
- **(13)** Many of the reactions of compound **2** with electrophiles are characterized by the formation of intense colors and apparently high molecular weight products. The possibility of direct electron transfer from **2** to give cation and anion radical intermediates and extensive polymerization seems likely.
- **(14)** For a recent discussion+ see K. N. Houk, Acc. Chem. Res., **8,371 (1975).** We thank Professor Houk for a useful exchange of correspondence on our work.
- **(15)** Compound **2** appears to be the first 3-oxygenated vinylketene equivalent for Dials-Alder reactions. For simple vinylketene equivalents in Diels-Alder reactions, see (a) E. J. Corey and A. P. Kozikowski, Tetrahedron Lett, **2389 (1975); (b)** E. Sonveaux and L. Ghosez, *J.* Am. Chem. *SOC.,* **95, 5417 (1973).**

Samuel Danishefsky,* Robert McKee Rajendra K. Singh

Department of Chemistry, University of Pittsburgh Pittsburgh, Pennsylvania 15260 Received April 27,1976

α -Arylation of α , β -Unsaturated Ketones. **Utilization of the a-Epoxytosylhydrazone** Functional Group as a Δ^2 -Enonium Synthon

Summary: The sequential reaction of a-epoxytosylhydrazones (easily available in two steps from α, β -unsaturated ketones) with *n*-butyllithium (1.0 equiv) followed by phenylcopper (1.2) equiv) yields **a-aryl-@-hydroxytosylhydrazones** which may be dehydrated and hydrolyzed to produce α -aryl α, β -unsaturated ketones.

Sir: In connection with a synthetic project, we required methodology for the α -arylation of α, β -unsaturated ketones $(1 \rightarrow 2)$ ^{1,2}

Our previous observation that the reaction of arylcopper reagents with tosylazoenes **(3)** resulted in a facile synthesis of α -aryltosylhydrazones **(4)** suggested a possible solution to

this problem. 3 It is well known that the base- (and acid-) catalyzed fragmentation reaction of α -epoxytosylhydrazones $(5 \rightarrow 7)$ proceeds via an azoene intermediate $(6);^{4,5}$ therefore, if azoene intermediates could be generated in *the* presence of an arylcopper reagent, they should be smoothly intercepted to yield an **a-aryl-P-hydroxytosylhydrazone (8).** Dehydration (to **9)** and hydrolysis should, in turn, produce the desired enone **10.**

We are pleased to report that this is indeed the case. Reaction of isophorone oxide⁶ with a suspension of tosylhydrazine (18 h, room temperature) in ether produces the insoluble crystaline a-epoxytosylhydrazone **57** (95%). Addition of **5** to

a tetrahydrofuran (THF) solution of phenylcopper **(2.5** equiv, solubilized as its diisopropyl sulfide complex) at -20 °C, followed by warming to 0° C (over 1.5 h), produces the α -phe**nyl-P-hydroxytosylhydrazone 8** *(80%).8* Since this procedure

has the attendant disadvantage of being wasteful with respect to the phenylcopper reagent and since our eventual application demands the use of a more highly functionalized arylcopper species, we required an alternate procedure (see Experimental). α -Epoxytosylhydrazone 5 (THF, -78 °C) is treated with n -butyllithium (1.0 equiv, dipyridyl indicator⁹) to produce a solution of the α -epoxytosylhydrazone anion 11 $(-78 \degree C)$. The soluble phenylcopper reagent is added to this solution (-78 °C) and the reaction is allowed to warm to 0 °C $(-20 \rightarrow 0 \degree C, 1.5 h)^{10}$ in order to again produce the phenylated product 8 (85%). Dehydration of 8 (C_6H_6 , reflux, 0.5 h) produces α , β -unsaturated tosylhydrazone 9^8 (95%) which can be smoothly converted to enone 10¹¹ (94%) via carbonyl ex $change.^{12,13}$

Epoxy ketones **12,17a,** and **17b** are also easily transformed to α -arylenones 16, 21a, and 21b by application of the above methodology. The α -phenyl- β -hydroxytosylhydrazones (8, **14,19a, 19b)** are all isolated as a single isomer in the four cases

Reagents: (i) $H_2NNHSO_2C_7H_7/ether$; (ii) (1) n-BuLi (-78 °C), (2) C_6H_5Cu (12 equiv), -20 °C; (iii) C_6H_6 , Δ ; (iv) $BF_3 \cdot Et_2O$, H_2O , $(CH_3)_2CO$.

examined, Although the stereochemistry of 8 or **14** has not yet been established, **19a** and **19b** appear to have the hydroxyl and phenyl groups in a cis relationship $(J_{2,3} = 2.5 \text{ Hz})$.¹⁴

The chemistry of an acyclic example further documents the utility of this arylation reaction. Although acyclic α -epoxytosylhydrazones cannot be prepared in polar solvents owing to intramolecular pyrazoline formation,7b the conversion of **22** to **237c** using ether/tosylhydrazine78 presents no difficulties

(85%). Sequential reaction of **23** with n-butyllithium and phenylcopper provides **erythro-a-phenyl-8-hydroxytos**ylhydrazone **(24a,8** 60%). Hydrolysis12 of **24a** provides erythro- β -hydroxy ketone 24b^{8,15} (60%), which can be converted to acetate $24c^8$ [(CH₃CO)₂O/C₅H₅N, 98%] for the purpose of spectral assignment.16 The isomeric threo-tosylhydrazone **25a** has not been directly isolated from this reaction, but its presence $(\sim 10\%^{17})$ has been inferred by isolation of threo- β -hydroxy ketone 25b⁸ (6%) by hydrolysis¹² and chromatography of the **24a** reaction residues (7% **24b** also isolated). This places the value of the **24a:25a** ratio for the phenylation reaction at \sim 7:1.

An additional complication exists with the acyclic example. Attempted dehydration of $24a$ (C_6H_6 , reflux, 6 h) produces no unsaturated tosylhydrazone **(26),** but, instead, **24a**

undergoes retro-aldol reaction. This difficulty is overcome by conversion of **24a** to the bisacetyl derivative **27d7** (CH3- $\rm CO_{2}O/C_{5}H_{5}N$, 98%) which, in turn, can be converted to the thermodynamically more stable enone **27** by a single-step hydrolysis-elimination reaction (80%).¹⁸

Although the primary goal of this investigation was to provide methodology for the α -arylation of α, β -unsaturated ketones, the α -aryl- β -hydroxytosylhydrazones and α , β -unsaturated tosylhydrazones produced via the azoene route should serve equally well as precursors for previously established tosylhydrazone transformations.¹⁹

Acknowledgment. I wish to thank Eli Lilly and Co. for a Young Faculty Grant.

Supplementary Material Available. General experimental, characterization information, and spectral data (1 page). Ordering information is given on any current masthead page.

References and Notes

- (1) A recent paper details a method for the α -alkylation of α , β -unsaturated ketones via the reaction of lithium dialkylcuprates **(5** equiv) with a-epoxy oximes: E. J. Corey, L. S. Melvin, Jr., and M. F. Haslanger, *Tetrahedron Lett.,* **3117 (1975).**
- (2) (a) Another method for the α -arylation (and alkylation) of enones is based on the reaction of Grignard reagents with **a-epoxydimethylhydrazones:** G. Stork and A. Ponaras, *J. Org. Chem.,* following paper in this issue. (b) See also A. Ponaras, *Diss. Abstr.,* **34, 145 (1973).** (c) We are very grateful to Dr. Stork and Dr. Ponaras for providing us these results prior to publication.
- **(3)** C. E. Sacks and P. L. Fuchs, *J. Am. Chem.* Soc., **97,7372 (1975).** (4) (a) A. Eschenmoser, D. Felix, and G. Ohloff, *Helv. Chim. Acta,* **50,** 708
(1967); (b) J. Schreiber, D. Felix, A. Eschenmoser, M. Winter, F. Gautschi,
K. H. Schulte-Elte, E. Sundt, G. Ohloff, J. Kalvoda, M. Kaufmann, P and G. Anner, *ibid.*, 50, 2101 (1967); (c) P Wieland, H. Kaufmann, and A. Eschenmoser, *ibid.*, 50, 2108 (1967); (d) M. Tanabe, D. F. Crowe, R. L. Dehn, and G. Detre, *Tetrahedron Lett.*, 3739 (1967); (e) M. Tanabe, D. F.
- generated from N,N-ditosylhydrazones have been previously reported: J.

F. W. Keana, D. P. Dolata, and J. Ollerenshaw, *J. Org. Chem.,* **38, 3815 (1973).**

- **(6)** Prepared from the corresponding enone by the method of **R.** L. Wasson and H. 0. House, "Organic Syntheses", Collect. Vol. IV, Wiley, New York, N.Y., **1963,** p **552.**
- **(7)** (a) This mild procedure appears to be generally applicable for the preparation of high-purity α-epoxytosylhydrazones in excellent yields. Difficulties
associated with preparation of this compound class in polar solvents or
in the presence of acid catalysts are well documented.^{4,7b} α-Epoxyto ylhydrazones are best kept in the freezer for extended storage. (b) **A.** Padwa, *J. Org. Chem.,* **30, 1274 (1965).** (c) Melting points ("C, all with decomposition, -N2): **5,90-91; 12,86-87; 17a, 117-1 18.5; 17b, 69-90;**
- **23, 123-125. (8)** (a) This material exhibits spectra (ir, NMR) and analysis (CHNS or CH) in accord with its assigned structure. (b) Melting point and TLC R_f values for these compounds can be found in the microfilm version.
- **(9) S.** C. Watson and J. F. Eastham, *J. Organometal. Chem.,* **9, 165 (1967).** (10) The solution of anion 11 appears to be stable at temperatures below *ca.*
—30 °C (TLC analysis). The temperature (-20 °C) at which the phenylation reaction proceeds appears to be the same temperature at which epoxide fragmentation occurs *in the absence of phenylcopper.* This observation is consistent with the epoxide fragmentation being the rate-determining step for the overall process. (Simpler azoenes are phenylated within 1 min at **-65** "C3.)
- (1 1) (a) This material exhibits spectra (ir, NMR, mass) and analysis (exact mass) in accord with its assigned structure. (b) Melting points (°C): **2,** 86–87; **16,**
77–78; **21a,** 94–95 (Iit.^{11c} 94–95); **21b,** oil (Iit.^{11c} oil); **27,** 54–55 (Iit.11c **55-556).** (c) H. Born, R. Pappo, and J. Szmuszkovicz, *J. Chem. Soc.,* **1779 (1953).** (d) H. E. Zimmerman, L. Singer, and B. S. Thyagarajan, *J. Am. Chem.* Soc., **81, 108 (1959).**
-
- **(12)** C. E. Sacks and P. **L.** Fuchs, *Synthesis,* in press. **(13)** Direct hydrolysis'* of **8** is **less** satisfactory. Several other minor unchar- α acterized products contaminate a mixture of β -hydroxy ketone and eno **10.**
- **(14)** The Corey' and Stork2 procedures give products of trans stereochemistry. The synthetic and mechanistic consequences of this observation are under further investigation.
- **(15)** Benzaldehyde and phenylacetone **(20-25%** each) are also produced in this reaction.
- (16) See supplimentary material for the spectral assignments.
(17) This estimation is based on the assumption that the hydrolysis reaction¹² is equally efficient **(-60%)** for both isomers.
- (18) If this reaction is conducted for shorter periods of time or at a lower tem-perature, significant amounts **(40-50%)** of acetate **24c** may be isolated in addition to enone **27.**
- (19) (a) For example, tosylhydrazones 9 and 15 serve as excellent substrates
for the Dauben–Shapiro diene synthesis.^{19b} Treatment of 9 and 15 (in THF,
—78 °C) with lithium diisopropylamide^{19c,d} (2.5 equv), followed by to room temperature (1.5 h), produces 2-phenyl-1,5,5-trimethyl-1,3-cy-
clohexadiene (90%) and 1-phenyl-4,4a,5,6,7,8-hexahydronaphthalene **(85%),** respectively. (b) W. G. Dauben, M. **E.** Lorber, N. D. Vietmeyer, R. H. Shapiro, J. **H.** Duncan, and K. Tomer, *J. Am. Chem. SOC.,* **90, 4762 (1968).** (c) G. E. Gream, L. R. Smith, and J. Meinwald, *J. Org. Chem.,* **39, 3461 (1974).** (d) E. Vedejs and R. A. Shepherd, *J. Org. Chem.,* **41, 742 (1976).**

P. L. Fuchs

Department of Chemistry, Purdue University West Lafayette, Indiana *47907* Received March *22, 1976*

a-Alkylation and Arylation of α , β -Unsaturated Ketones

Summary: The N,N-dimethylhydrazones of α , β -epoxy ketones react with aryl and alkyl Gringnard reagents to produce intermediates β -hydroxyhydrazones which are dehydrated to α -aryl or α -alkyl enones; the scheme represents a method for the introduction of alkyl and aryl groups on the α carbon of an α , β -unsaturated ketone.

Sir: The introduction of carbon substituents on the α carbon of an α , β -unsaturated ketone, with preservation of the α , β unsaturation $(1 \rightarrow 2)$, can often be carried out by formation

of the thermodynamic enolate ion, followed by treatment with an alkyl halide.¹ The method is not applicable, however, inter alia, (a) when the α , β -unsaturated ketone is incapable of